Chapter 7: Sea Urchins and Tunicates: Deuterostome Invertebrates

Where possible, references have been linked to PubMed, the National Center for Biotechnology Information’s online database of journal article citations. Citations that do not include links to PubMed are either referring to papers that are too old to be included in PubMed, or to books, which are not listed on PubMed.

Aihara, M. and S. Amemiya. 2001. Left-right positioning of the adult rudiment in sea urchin larvae is directed by the right side. Development 128: 4935–4948.
PubMed Link

Alford, L. M., M. M. Ng and D. R. Burgess. 2009. Cell polarity emerges at first cleavage in sea urchin embryos. Dev. Biol. 330(1): 12–20.
PubMed Link

Angerer, L. M. and R. C. Angerer. 2000. Animal-vegetal axis patterning mechanisms in the early sea urchin embryo. Dev. Biol. 218(1): 1–12.
PubMed Link

Armstrong, N., J. Hardin and D. R. McClay. 1993. Cell-cell interactions regulate skeleton formation in the sea urchin embryo. Development 119: 833–840.
PubMed Link

Balinsky, B. I. 1981. Introduction to Embryology, 5th Ed. Saunders, Philadelphia.

Bates, W. R. and W. R. Jeffery. 1988. Polarization of ooplasmic segregation and dorsal-ventral axis determination in ascidian embryos. Dev. Biol. 130: 98–107.
PubMed Link

Beane, W. S., J. M. Gross and D. R. McClay. 2006. RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation. Dev. Biol. 292(1): 213–225.
PubMed Link

Berg, L. K., S. W. Chen and G. M. Wessel. 1996. An extracellular matrix molecule that is selectively expressed during development is important for gastrulation in the sea urchin embryo. Development 122: 703–713.
PubMed Link

Bessodes, N., E. Haillot, V. Duboc, E. Röttinger, F. Lahaye and T. Lepage. 2012. Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo. PLoS Genet. 8(12): e1003121.
PubMed Link

Boveri, T. 1901. Die Polaritat von Ovocyte, Ei, und Larve des Strongylocentrotus lividus. Zool. Jahrb. Abt. Anat. Ontog. Tiere 14: 630–653.

Britten, R. and E. H. Davidson. 1969. Gene regulation for higher cells: A theory. Science 165: 349–357.
PubMed Link

Bury, H. 1895. The metamorphosis of echinoderms. Quart. J. Microsc. Sci. 29: 45–135.

Cameron, R. A., S. E. Fraser, R. J. Britten and E. H. Davidson. 1989. The oral-aboral axis of a sea urchin embryo is specified by the first cleavage. Development 106: 641–647.
PubMed Link

Chabry, L. M. 1888. Contribution a l’embryologie normale tératologique des ascidies simples. J. Anat. Physiol. Norm. Pathol. 23: 167–321.

Cherr, G. N., R. G. Summers, J. D. Baldwin and J. B. Morrill. 1992. Preservation and visualization of the sea urchin blastocoelic extracellular matrix. Microsc. Res. Tech. 22: 11–22.
PubMed Link

Christiaen, L., A. Stolfi, B. Davidson and M. Levine. 2009. Spatio-temporal intersection of Lhx3 and Tbx6 defines the cardiac field through synergistic activation of Mesp. Dev. Biol. 328: 552–560.
PubMed Link

Coffman, J. A. and E. H. Davidson. 2001. Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry. Dev. Biol. 230: 18–28.
PubMed Link

Coffman, J. A., A. Coluccio, A. Planchart and A. J. Robertson. 2009. Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2. Dev. Biol. 330: 123–130.
PubMed Link

Cohen, A. and N. J. Berrill, N. 1936. The development of isolated blastomeres of the ascidian egg. J. Exp. Zool. 74: 91–117.

Conklin, E. G. 1905. The orientation and cell-lineage of the ascidian egg. J. Acad. Nat. Sci. Phila. 13: 5–119.

Croce, J. C. and D. R. McClay. 2010. Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. Development 137: 83–91.
PubMed Link

Dan, K. 1960. Cytoembryology of echinoderms and amphibia. Int. Rev. Cytol. 9: 321–368.
PubMed Link

Dan, K. and K. Okazaki. 1956. Cyto-embryological studies of sea urchins. III. Role of secondary mesenchyme cells in the formation of the primitive gut in sea urchin larvae. Biol. Bull. 110: 29–42.

Davidson, B. and M. Levine. 2003. Evolutionary origins of the vertebrate heart: specification of the cardiac lineage in Ciona intestinalis. Proc. Nat. Acad. Sci. USA 100: 11469–11473.
PubMed Link

Davidson, E. H. and M. S. Levine. 2008. Properties of developmental gene regulatory networks. Proc. Natl. Acad. Sci. USA 105: 20063–20066.
PubMed Link

Deschet K., Y. Nakatani and W. C. Smith. 2003. Generation of Ci-Brachyury-GFP stable transgenic lines in the ascidian Ciona savignyi. Genesis 35: 248–259.
PubMed Link

Duboc V., E. Röttinger, L.Besnardeau and T. Lepage. 2004. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev. Cell. 6:397–410.
PubMed Link

Duboc, V., E. Rottinger, F. Lapraz, L. Besnardeau and T. Lepage. 2005. Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. Dev. Cell. 9: 147–158.
PubMed Link

Duloquin, L., G. Lhomond and C. Gache. 2007. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 134(12): 2293–2302.
PubMed Link

Ernst, S. G. 2011. Offerings from an urchin. Dev. Biol. 358: 285–294.
PubMed Link

Ettensohn, C. A. 1985. Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells. Dev. Biol. 112: 383–390.
PubMed Link

Ettensohn, C. A. 1990. The regulation of primary mesenchyme cell patterning. Dev. Biol. 140: 261–271.
PubMed Link

Ettensohn, C. A. and D. R. McClay. 1986. The regulation of primary mesenchyme cell migration in the sea urchin embryo: Transplantations of cells and latex beads. Dev. Biol. 117: 380–391.
PubMed Link

Ettensohn, C. A. and E. P. Ingersoll. 1992. Morphogenesis of the sea urchin embryo. In E. F. Rossomondo and S. Alexander (eds.), Morphogenesis. Marcel Dekker, New York, pp. 189–262.

Fink, R. D. and D. R. McClay. 1985. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev. Biol. 107: 66–74.
PubMed Link

Flowers, V. L., G. R. Courteau, A. J. Poustka, W. Weng and J. M. Venuti. 2004. Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo. Dev.Dyn. 231: 727–740.
PubMed Link

Galileo, D. S. and J. B. Morrill. 1985. Patterns of cells and extracellular material of the sea urchin Lytechinus variegatus (Echinodermata; Echinoidea) embryo, from hatched blastula to late gastrula. J. Morphol. 185: 387–402.

Gao, F. and E. H. Davidson. 2008. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proc. Nat. Acad. Sci. USA 105(16): 6091–6096.
PubMed Link

Gustafson, T. and L. Wolpert. 1967. Cellular movement and contact in sea urchin morphogenesis. Biol. Rev. 42: 442–498.
PubMed Link

Hörstadius, S. 1939. The mechanics of sea urchin development, studied by operative methods. Biol. Rev. 14: 132–179.

Hörstadius, S. 1973. Experimental Embryology of Echinoderms. Clarendon Press, Oxford.

Hardin, J. D. 1988. The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation. Development 103: 317–324.
PubMed Link

Hardin, J. D. 1990. Context-dependent cell behaviors during gastrulation. Semin. Dev. Biol. 1: 335–345.

Hardin, J. D. and D. R. McClay. 1990. Target recognition by the archenteron during sea urchin gastrulation. Dev. Biol. 142: 86–102.
PubMed Link

Hardin, J. D. and L. Y. Cheng. 1986. The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev. Biol. 115: 490–501.

Harkey, M. A. and A. M. Whiteley. 1980. Isolation, culture and differentiation of echinoid primary mesenchyme cells. Wilhelm Roux Arch. Dev. Biol. 189: 111–122.

Hibino, T., T. Nishikata and H. Nishida.1998. Centrosome-attracting body: A novel structure closely related to unequal cleavages in the ascidian embryo. Dev. Growth Diff. 40(1): 85–95.
PubMed Link

Hodor, P. G. and C. A. Ettensohn. 1998. The dynamics and regulation of mesenchymal cell fusion in the sea urchin. Dev. Biol. 199: 111–124.
PubMed Link

Imai, K. S., N. Satoh and Y. Satou. 2002. Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos. Development 129: 1729–1738.
PubMed Link

Imai, K. S., N. Takada, N. Satoh and Y. Satou. 2000. b-Catenin mediates the specification of endoderm cells in ascidian embryos. Development 127: 3009–3020.
PubMed Link

Imai, K., N. Takada, N. Satoh and Y. Satou. 2000. Beta-catenin mediates the specification of endoderm cells in ascidian embryos. Development 127: 3009–3020.
PubMed Link

Jeffery, W. R. and B. J. Swalla. 1997. Tunicates. In S. F. Gilbert and A. M. Raunio (eds.), Embryology: Constructing the Organism. Sinauer Associates, Sunderland, MA, pp. 331–364.

Jiang, D, E. M. Munro and W. C. Smith. 2005. Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of notochord cells. Curr. Biol. 15: 79–85.
PubMed Link

Karp, G. C. and M. Solursh. 1985. Dynamic activity of the filopodia of sea urchin embryonic cells and their role in directed migration of the primary mesenchyme in vitro. Dev. Biol. 112: 276–283.
PubMed Link

Kedes, L. H., A. C. Chang, D. Houseman and S. N. Cohen. 1975. Isolation of histone genes from unfractionated sea urchin DNA by subculture cloning in E. coli. Nature 255: 533–538.
PubMed Link

Kim, G. J., A. Yamada and H. Nishida. 2000. An FGF signal from endoderm and localized factors in the posterior-vegetal egg cytoplasm pattern the mesodermal tissues in the ascidian embryo. Development 127: 2853–2862.
PubMed Link

Kimberly, E. L. and J. Hardin.1998. Bottle cells are required for the initiation of primary invagination in the sea urchin embryo. Dev. Biol. 204: 235–250.
PubMed Link

Kobayashi, K., K. Sawada, H. Yamamoto, S. Wada, H. Saiga and H. Nishida. 2003. Maternal Macho-1 is an intrinsic factor that makes cell response to the same FGF signal differ between mesenchyme and notochord induction in ascidian embryos. Development 130: 5179–5190.
PubMed Link

Kominami, T. and H. Takata. 2004. Gastrulation in the sea urchin embryo: A model system for analyzing the morphogenesis of a monolayered epithelium. Dev. Growth Diff. 46: 309–326.
PubMed Link

Lane, M. C. and M. Solursh. 1991. Primary mesenchyme cell migration requires a chondroitin sulfate/dermatan sulfate proteoglycan. Dev. Biol. 143: 389–398.
PubMed Link

Lane, M. C., M. A. R. Koehl, F. Wilt and R. Keller. 1993. A role for regulated secretion of apical matrix during epithelial invagination in the sea urchin. Development 117: 1049–1060.
PubMed Link

Lemaire, P. 2009. Unfolding a chordate developmental program, one cell at a time: Invariant lineages, short-range inductions, and evolutionary plasticity in ascidians. Dev. Biol. 332: 48–60.
PubMed Link

Leonard, J. D. and C. A. Ettensohn. 2007. Analysis of dishevelled localization and function in the early sea urchin embryo. Dev. Biol. 306(1): 50–65.
PubMed Link

Lepage, T., C. Sardet and C. Gache. 1992. Spatial expression of the hatching enzyme gene in the sea urchin embryo. Dev. Biol. 150: 23–32.
PubMed Link

Logan, C. Y. and D. R. McClay. 1999. Lineages that give rise to endoderm and mesoderm in the sea urchin embryo. In S. A. Moody (ed.), Cell Lineage and Determination. Academic Press, New York, pp. 41–58.

Luo, Y. J. and Y. H. Su. 2012. Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. PLoS Biol. 10: e1001402.
PubMed Link

Makabe, K. W. and H. Nishida. 2012. Cytoplasmic localization and reorganization in ascidian eggs: Role of postplasmic/PEM RNAs in axis formation and fate determination. Wiley Interdiscip. Rev. Dev. Biol. 1: 501–518.
PubMed Link

Malinda, K. M. and C. A. Ettensohn. 1994. Primary mesenchyme cell migration in the sea urchin embryo: Distribution of directional cues. Dev. Biol. 164: 562–578.
PubMed Link

Malinda, K. M., G. W. Fisher and C. A. Ettensohn. 1995. Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo. Dev. Biol. 172: 552–566.
PubMed Link

Martik, M. and D. R. McClay. 2012. Gastrulation in high-resolution: New insights into an important process of development.  Abstracts of the Society for Developmental Biology Annual Meeting 2102. Abstract 126, p. 41.

Martins, G. G., R. G. Summers and J. B. Morrill. 1998. Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus. Dev. Biol. 198: 330–342.
PubMed Link

Maruyama, Y. K., Y. Nakeseko and S. Yagi. 1985. Localization of cytoplasmic determinants responsible for primary mesenchyme formation and gastrulation in the unfertilized eggs of the sea urchin Hemicentrotus pulcherrimus. J. Exp. Zool. 236: 155–163.

McClay, D. R. 2011. Evolutionary crossroads in developmental biology: Sea urchins. Development 138: 2639–2648.
PubMed Link

Miller, J. R., S. E. Fraser and D. R. McClay. 1995. Dynamics of thin filopodia during sea urchin gastrulation. Development 121: 2505–2511.
PubMed Link

Morokuma, J., M. Ueno, H. Kawanishi, H. Saiga and H. Nishida. 2002. HrNodal, the ascidian nodal-related gene, is expressed in the left side of the epidermis and lies upstream of HrPitx. Dev. Genes Evol. 212: 439–446.
PubMed Link

Morrill, J. B. and L. L. Santos. 1985. A scanning electron micrographical overview of cellular and extracellular patterns during blastulation and gastrulation in the sea urchin, Lytechinus variegatus. In R. H. Sawyer and R. M. Showman (eds.), The Cellular and Molecular Biology of Invertebrate Development. University of South Carolina Press, Columbia, pp. 3–33.

Nakatani, Y., H. Yasuo, N. Satoh and H. Nishida. 1996. Basic fibroblast growth factor induces notochord formation and the expression of As-T, a Brachyury homolog, during ascidian embryogenesis. Development 122: 2023–2031.
PubMed Link

Nam, J., Y. H. Su, P. Y. Lee, A. J. Robertson, J. A. Coffman and E. H. Davidson. 2007. cis-Regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network. Dev. Biol. 306: 860–869.
PubMed Link

Nance, J. 2005. PAR proteins and the establishment of cell polarity during C. elegans development. BioEssays 27: 126–135.
PubMed Link

Newrock, K. M., C. R. Alfageme, R. V. Nardi and L. H. Cohen. 1978. Histone changes during chromatin remodeling in embryogenesis. Cold Spring Harb. Symp. Quant. Biol. 42: 421–431.
PubMed Link

Nishida, H. 1987. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev. Biol. 121: 526–541.
PubMed Link

Nishida, H. 1992a. Determination of developmental fates of blastomeres in ascidian embryos. Dev. Growth Diff. 34: 253–262.

Nishida, H. 1992b. Regionality of egg cytoplasm that promotes muscle differentiation in embryo of the ascidian Halocynthia roretzi. Development 116: 521–529.

Nishida, H. 1994. Localization of determinants for formation of the anterior-posterior axis in eggs of the ascidian Halocynthia roretzi. Development 120: 3093–3104.

Nishida, H. 2005. Specification of embryonic axis and mosaic development in ascidians. Dev. Dynam. 233: 1177–1193.
PubMed Link

Nishida, H. and K. Sawada. 2001. macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature 409: 724–729.
PubMed Link

Nishide, K., M. Mugitani, G. Kumano and H. Nishida. 2012. Neurula rotation determines left-right asymmetry in ascidian tadpole larvae. Development 139: 1467–1475.
PubMed Link

Nishikata, T., T. Hibino and H. Nishida. 1999. The centrosome-attracting body, microtubule system, and posterior egg cytoplasm are involved in positioning of cleavage planes in the ascidian embryo. Dev. Biol. 209(1): 72–85.
PubMed Link

Okazaki, K. 1975. Spicule formation by isolated micromeres of the sea urchin embryo. Am. Zool. 15: 567–581.

Oliveri, P., Q. Tu and E. H. Davidson. 2008. Global regulatory logic for specification of an embryonic cell lineage. Proc. Nat. Acad. Sci. USA 105(16): 5955–5962.
PubMed Link

Patalano, S., G. Prulière, F. Prodon, A. Paix, P. Dru, C. Sardet and J. Chenevert. 2006. The aPKC-PAR-6-PAR-3 cell polarity complex localizes to the centrosome attracting body, a macroscopic cortical structure responsible for asymmetric divisions in the early ascidian embryo. J. Cell Sci. 119(Pt 8): 1592–1603.
PubMed Link

Peterson, R. E. and D. R. McClay. 2003. Primary mesenchyme cell patterning during the early stages following ingression. Dev. Biol. 254: 68–78.
PubMed Link

Prodon, F., C. Sardet and H. Nishida. 2008. Cortical and cytoplasmic flows driven by actin microfilaments polarize the cortical ER-mRNA domain along the a-v axis in ascidian oocytes. Dev. Biol. 313(2): 682–699.
PubMed Link

Prodon, F., P. Dru, F. Roegiers and C. Sardet. 2005. Polarity of the ascidian egg cortex and reloclization of cER and mRNAs in the early embryo. J. Cell Sci. 118: 2393–2404.
PubMed Link

Röttinger, E., A. Saudemont, V. Duboc, L. Besnardeau, D. McClay and T. Lepage. 2008. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development 135(2): 353–365.
PubMed Link

Ransick, A. and E. H. Davidson. 1993. A complete second gut induced by transplanted micromeres in the sea urchin embryo. Science 259: 1134–1138.
PubMed Link

Ransick, A. and E. H. Davidson. 1995. Micromeres are required for normal vegetal plate specification in sea urchin embryos. Development 121: 3215–3222.
PubMed Link

Reverberi, G. and A. Minganti. 1946. Fenomeni di evocazione nello sviluppo dell’uovo di Ascidie. Risultati dell’indagine spermentale sull’ouvo di Ascidiella aspersa e di Ascidia malaca allo stadio di 8 blastomeri. Pubbl. Staz. Zool. Napoli 20: 199–252.

Revilla-i-Domingo, R., P. Oliveri and E. H. Davidson. 2007. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres. Proc. Natl. Acad. Sci. USA 104: 12383–12388.
PubMed Link

Roegiers, F., A. McDougall and C. Sardet. 1995. The sperm entry point defines the orientation of the calcium-induced contraction wave that directs the first phase of cytoplasmic reorganization in the ascidian egg. Development 121: 3457–3466.
PubMed Link

Ruffins, S. W. and C. A. Ettensohn. 1996. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 122: 253–263.
PubMed Link

Sardet, C., A. Paix, F. Prodon, P. Dru and J. Chenevert. 2007. From oocyte to 16-cell stage: Cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev. Dyn. 236: 1716–1731.
PubMed Link

Sardet, C., P. Dru and F. Prodon. 2005. Maternal determinants and mRNAs in the cortex of ascidian oocytes, zygotes, and embryos. Biol Cell 97: 35–49.
PubMed Link

Satoh, N. 1978. Cellular morphology and architecture during early morphogenesis of the ascidian egg: An SEM study. Biol. Bull. 155: 608–614.
PubMed Link

Satoh, N., K. Tagawa and H. Takahashi. 2012. How was the notochord born? Evol. Dev. 14: 56–75.
PubMed Link

Satou, Y., K. S. Imai and N. Satoh. 2001. Early embryonic expression of a LIM-homeobox gene Cs-lhx3 is downstream of b-catenin and responsible for the endoderm differentiation in Ciona savignyi embryos. Development 128: 3559–3570.
PubMed Link

Satou, Y., K. S. Imai and N. Satoh. 2004. The ascidian Mesp gene specifies heart precursor cells. Development 131: 2533–2541.
PubMed Link

Sawada, K., Y. Fukushima and H. Nishida. 2005. Macho-1 functions as a transcriptional activator for muscle formation in embryos of the ascidian Halocynthia roretzi. Gene Exp. Patterns 5: 429–437.
PubMed Link

Sawada, T. and G. Schatten. 1989. Effects of cytoskeletal inhibitors on ooplasmic segregation and microtubule organization during fertilization and early development in the ascidian Molgula occidentalis. Dev. Biol. 132: 331–342.
PubMed Link

Sethi, A. J., R. C. Angerer and L. M. Angerer. 2009. Gene regulatory network interactions in sea urchin endomesoderm induction. PLoS Biol. 7(2): e1000029.
PubMed Link

Sherwood, D. R. and D. R. McClay. 1999. LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126:1703–1713.
PubMed Link

Speksnijder, J. E., C. Sardet and L. F. Jaffe. 1990. The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation. J. Cell Biol. 110: 1589–1598.
PubMed Link

Swalla, B. J. 2004. Protochordate gastrulation: Lancelets and ascidians. In C. D. Stern (ed.), Gastrulation: From Cells to Embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 139–149.

Sweet, H. C., P. G. Hodor and C. A. Ettensohn. 1999. The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis. Development 126: 5255–5265.
PubMed Link

Tung, T. C., S. C. Wu, Y. F. Yel, K. S. Li and M. C. Hsu. 1977. Cell differentiation in ascidians studied by nuclear transplantation. Scientia Sinica 20: 222–233.
PubMed Link

Warner, J. F., D. C. Lyons and D. R. McClay. 2012. Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult. PLoS Biol. 10(10): e1001404.
PubMed Link

Weitzel, H. E., M. R. Illies, C. A. Byrum, R. Xu, A. H. Wikramanayake and C. A. Ettensohn. 2004. Differential stability of b-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development 131: 2947–2956.
PubMed Link

Wessel, G. M. and D. R. McClay. 1985. Sequential expression of germ layer specific molecules in the sea urchin embryo. Dev. Biol. 111: 451–463.
PubMed Link

Wessel, G. M., R. B. Marchase and D. R. McClay. 1984. Ontogeny of the basal lamina in the sea urchin embryo. Dev. Biol. 103: 235–245.
PubMed Link

Whittaker, J. R. 1982. Muscle lineage cytoplasm can change the developmental expression in epidermal lineage cells of ascidian embryos. Dev. Biol. 93: 463–470.
PubMed Link

Wikramanayake, A. H. and 7 others. 2003. An ancient role for nuclear b-catenin in the evolution of axial polarity and germ layer segregation. Nature 426: 446–450.
PubMed Link

Wikramanayake, A. H., L. Huang and W. H. Klein. 1998. Beta-catenin is essential for  patterning the maternally specified animal-vegetal axis in the sea urchin embryo. Proc. Natl. Acad. Sci. USA 95: 9343–9348.
PubMed Link

Wolpert, L. and T. Gustafson. 1961. Studies in the cellular basis of morphogenesis of the sea urchin embryo: The formation of the blastula. Exp. Cell Res. 25: 374–382.
PubMed Link

Wray, G. A. 1999. Introduction to sea urchins. In S. A. Moody (ed.), Cell Lineage and Determination. Academic Press, New York, pp. 3–9.

Wu, S. Y., M. Ferkowicz and D. R. McClay. 2007. Ingression of primary mesenchyme cells of the sea urchin embryo: A precisely timed epithelial mesenchymal transition. Birth Def. Res. C Embryol. Today 81: 241–252.
PubMed Link

Yagi, K., N. Satoh and Y. Satou. 2004. Identification of downstream genes of the ascidian muscle determinant gene Ci-macho1. Dev. Biol. 274: 478–489.
PubMed Link

Yagi, K., N. Takatori, Y. Satou and N. Satoh. 2005b. Ci-Tbx6b and Ci-Tbx6c are key mediators of the maternal effect gene Ci-macho1 in muscle cell differentiation in Ciona intestinalis embryos. Dev. Biol. 282: 535–549.
PubMed Link

Yajima, M. and G. M. Wessel. 2011. Small micromeres contribute to the germline in the sea urchin. Development 138: 237–243.
PubMed Link

Yoshida, K. and H. Saiga. 2008. Left-right asymmetric expression of Pitx is regulated by the asymmetric Nodal signaling through an intronic enhancer in Ciona intestinalis. Dev. Genes Evol. 218: 353–360.
PubMed Link

 

Citation for the BioWeb Conference Links
Barresi, M. J., and Lee, K. 2005–2010. Biology Web Conferences. Smith College, Northampton, MA.

© All the material on this website is protected by copyright. It may not be reproduced in any form without permission from the copyright holder.
Home Link