Chapter 8: Early Development in Vertebrates: Amphibians and Fish

Where possible, references have been linked to PubMed, the National Center for Biotechnology Information’s online database of journal article citations. Citations that do not include links to PubMed are either referring to papers that are too old to be included in PubMed, or to books, which are not listed on PubMed.

Agius, E., M. Oelgeschläger, O. Wessely, C. Kemp and E. M. De Robertis. 2000. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127: 1173–1183.
PubMed Link

Akkers, R. C., S. J. van Heeringen, U. G. Jacobi, E. M. Janssen-Megens, K.-J. Françoijs, H. G. Stunnenberg and G. J. C. Veenstra. 2009. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev. Cell 17: 425–434.
PubMed Link

Ancel, P. and P. Vintenberger. 1948. Recherches sur le determinisme de la symmetrie bilatérale dans l’oeuf des amphibiens. Bull. Biol. Fr. Belg. [Suppl.] 31: 1–182.

Appel, T. A. 1987. The Cuvier-Geoffroy Debate: French Biology in the Decades before Darwin. Oxford University Press, New York.

Armon, R. 2012. Between biochemists and embryologists: The biochemical study of embryonic induction in the 1930s. J. Hist. Biol. 45: 65–108.
PubMed Link

Bïjtel, J. H. 1931. Über die Entwicklung des Schwanzes bei Amphibien. Wilhelm Roux Arch. Entwicklungsmech. Org. 125: 448–486.

Bae, S, C. D. Reid and D. S.  Kessler. 2011. Siamois and Twin are redundant and essential in formation of the Spemann organizer. Dev. Biol. 352: 367–381.
PubMed Link

Balinsky, B. I. 1975. Introduction to Embryology, 4th Ed. Saunders, Philadelphia.

Beams, H. W. and R. G. Kessel. 1976. Cytokinesis: A comparative study of cytoplasmic division in animal cells. Am. Sci. 64: 279–290.
PubMed Link

Beetschen, J. C. 2001. Amphibian gastrulation: History and evolution of a 125-year-old concept. Int. J. Dev. Biol. 45: 771–795.
PubMed Link

Behrndt, M. and 7 others. 2012. Forces driving epithelial spreading in zebrafish gastrulation. Science 338: 257–260.
PubMed Link

Beloussov, L. V., N. N. Luchinskaya, A. S. Ermakov and N. S. Glagoleva. 2006. Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events. Int. J. Dev. Biol. 50: 113–122.
PubMed Link

Beyer, T. and 13 others. 2012. Serotonin signaling is required for Wnt-dependent GRP specification and leftward flow in XenopusCurr. Biol. 22: 33–39.
PubMed Link

Birsoy, B., M. Kofron, K. Schaible, C. Wylie and J. Heasman. 2006. Vg 1 is an essential signaling molecule in Xenopus development. Development 133: 15–20.
PubMed Link

Blader, P. and U. Strähle 1998. Ethanol impairs migration of the prechordal plate in the zebrafish embryo. Dev. Biol. 201: 185–201.
PubMed Link

Blitz, I. L. and K. W. Y. Cho. 1995. Anterior neurectoderm is progressively induced during gastrulation: The role of the Xenopus homeobox gene orthodenticle. Development 121: 993–1004.
PubMed Link

Blum, M., T. Beyer, T. Weber, P. Vick, P. Andre, E. Bitzer and A. Schweickert. 2009. Xenopus, an ideal model system to study vertebrate left-right asymmetry. Dev. Dyn. 238: 1215–1225.
PubMed Link

Boucaut, J.-C., T. D’Arribère, T. J. Poole, H. Aoyama, K. M. Yamada and J.-P. Thiery. 1984. Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibition of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J. Cell Biol. 99: 1822–1830.
PubMed Link

Bouwmeester, T., S.-H. Kim, Y. Sasai, B. Lu and E. M. De Robertis. 1996. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382: 595–601.
PubMed Link

Bradbury, J. 2004. Small fish, big science. PLoS Biology 2: e148.
PubMed Link

Brannon, M. and D. Kimelman. 1996. Activation of siamois by the Wnt pathway. Dev. Biol. 180: 344–347.
PubMed Link

Brannon, M., M. Gomperts, L. Sumoy, R. T. Moon and D. Kimelman. 1997. b-catenin /XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11: 2359–2370.
PubMed Link

Braukmann, S. and S. F. Gilbert. 2005. Sucking in the gut: A history of early gastrulation research. In C. D. Stern (ed.), Gastrulation: From Cells to Embryo. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 1–20.

Caneparo, L., P. Pantazis , W. Dempsey, S. E. Fraser. 2011. Intercellular bridges in vertebrate gastrulation. PLoS One 6(5): e20230.
PubMed Link

Capuron, A. 1968. Marquage autoradiographique et conditions de l’organogenèse générale d’embryons induits par de la greffe de la lèvre dorsale du blastopore chez l’amphibien urodèle Pleurodeles waltii Michah. Ann. Embryol. Morphol. 1: 271–293.

Carlson, B. M. 1981. Patten’s Foundations of Embryology. McGraw-Hill, New York.

Carmany-Rampey, A. and A. F. Schier. 2001. Single-cell internalization during zebrafish gastrulation. Curr. Biol. 11: 1261–1265.
PubMed Link

Carnac, G., L. Kodjabachian, J. B. Gurdon and P. Lemaire. 1996. The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm. Development 122: 3055–3065.
PubMed Link

Carvalho, L. and C. P.  Heisenberg. 2010. The yolk syncytial layer in early zebrafish development. Trends Cell Biol. 20: 586–592.
PubMed Link  

Cha, B. J. and D. L. Gard. 1999. XMAP230 is required for the organization of cortical microtubules and patterning of the dorsoventral axis in fertilized Xenopus eggs. Dev. Biol. 205: 275–286.
PubMed Link

Chea, H. K., C. V. Wright and B. J. Swalla. 2005. Nodal signaling and the evolution of deuterostome gastrulation. Dev. Dyn. 234: 269–278.
PubMed Link

Chen, Y. P., L. Huang and M. Solursh. 1994. A concentration gradient of retinoids in the early Xenopus laevis embryo. Dev. Biol. 161: 70–76.
PubMed Link

Cho, K. W. and E. M. De Robertis. 1990. Differential activation of Xenopus homeobox genes by mesoderm-inducing growth factors and retinoic acid. Genes Dev. 4: 1910–1916.
PubMed Link

Cho, K.W.Y. 2012. Enhancers. WIRES Dev. Biol. 1: 469–478.
PubMed Link

Cooper, M. S. and L. A. D’Amico. 1996. A cluster of noninvoluting endocytic cells at the margin of the zebrafish blastoderm marks the site of embryonic shield formation. Dev. Biol. 180: 184–198.
PubMed Link

Cuykendall, T. N. and D. W. Houston. 2009. Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation. Development 136: 3057–3065.
PubMed Link

Dale, L. and J. M. W. Slack. 1987. Regional specificity within the mesoderm of early embryos of Xenopus laevis. Development 100: 279–295.
PubMed Link

Dale, L., G. Howes, B. M. J. Price and J. C. Smith. 1992. Bone morphogenetic protein 4: A ventralizing factor in early Xenopus development. Development 115: 573–585.
PubMed Link

Dal-Pra, S., M. Fürthauer, J. Van-Celst, B. Thisse and C. Thisse. 2006. Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP activity. Dev. Biol. 298: 514–526.
PubMed Link

Davidson, L. A., B. D. Dzamba, R. Keller and D. W. DeSimone. 2008. Live imaging of cell protrusive activity, and extracellular matrix assembly and remodeling during morphogenesis in the frog, Xenopus laevis. Dev. Dyn. 237: 2684–2692.
PubMed Link

Davidson, L. A., M. Marsden, R. Keller and D. W. DeSimone. 2006. Integrin a5b1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr. Biol. 16: 833–844.
PubMed Link

De Robertis, E. M. and J Aréchaga (eds.). 2001. The Spemann-Mangold organizer: 75 Years On. Int. J. Dev. Biol. 45 (1) (Special Issue).

De Robertis, E. M. and Y. Sasai. 1996. A common plan for dorsoventral patterning in Bilateria. Nature 380: 37–40.
PubMed Link

De Robertis, E. M., J. Larraín, M. Oelgeschläger and O. Wessley. 2000. The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nature Rev. Genet. 1: 171–181.
PubMed Link

De Robertis, E. M., M. Blum, C. Niehrs and H. Steinbeisser. 1992. Goosecoid and the organizer. Development [Suppl.]: 167–171.
PubMed Link

Dobbs-McAuliffe, B., Q. Zhao and E. Linney. 2004. Feedback mechanisms regulate retinoic acid production and degradation in the zebrafish embryo. Mech. Dev. 121: 339–350.
PubMed Link

Domingos, P. M., N. Itasaki, C. M. Jones, S. Mercurio, M. G. Sargent, J. C. Smith and R. Krumlauf. 2001. The Wnt/b-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling. Dev. Biol. 239: 148–160.
PubMed Link

Dosch, R., D. S. Wagner, K. A. Mintzer, G. Runke, A. P. Wiemelt and M. C. Mullins. 2004. Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev. Cell 6: 771–780.
PubMed Link

Dosch, R., V. Gawantka, H. Delius, C. Blumenstock and C. Niehrs. 1997. BMP-4 acts as a morphogen in dorsolateral mesoderm patterning in Xenopus. Development 124: 2325–2334.
PubMed Link

Driever, W. 1995. Axis formation in zebrafish. Curr. Opin. Genet. Dev. 5: 610–618.
PubMed Link

Driever, W. and 11 others. 1996. A genetic screen for mutations affecting development in zebrafish. Development 123: 37–46.
PubMed Link

Du, S., B. W. Draper, M. Mione, C. B. Moens and A. Bruce. 2012. Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin A. Dev. Biol. 362: 11–23.
PubMed Link

Dumortier, J. G., S. Martin, D. Meyer, F. M. Rosa and N. B. David. 2012. Collective mesendoderm migration relies on an intrinsic directionality signal transmitted through cell contacts. Proc. Natl. Acad. Sci. USA 109: 16945–16950.
PubMed Link

Dupé, V. and A. Lumsden. 2001. Hindbrain patterning involves graded responses to retinoic acid signalling. Development 128: 2199–2208.
PubMed Link

Durston, A. J., H. J. Jansen and S. A. Wacker. 2010a. Time-space translation: A developmental principle. ScientificWorld 10: 2207–2214.
Link

Durston, A. J., H. J. Jansen and S. A. Wacker. 2010b. Time-space translation regulates trunk axial patterning in the early vertebrate embryo. Genomics 95: 250–255.
PubMed Link

Eivers, E., K. McCarthy, C. Glynn, C. M. Nolan and L. Byrnes. 2004. Insulin-like growth factor (IGF) signaling is required for early dorso-anterior development of the zebrafish embryo. Int. J. Dev. Biol. 48: 1131–1140.
PubMed Link

Elinson, R. P. and B. Rowning. 1988. A transient array of parallel microtubules in frog eggs: Potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev. Biol. 128: 185–197.
PubMed Link

Engleka, M. J. and D. S. Kessler. 2001. Siamois cooperates with TGFβ signals to induce the complete function of the Spemann-Mangold organizer. Int. J. Dev. Biol. 45: 241–250.
PubMed Link

Essner, J. J., J. D. Amack, M. K. Nyholm, E. B. Harris and H. J. Yost. 2005. Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132: 1247–1260.
PubMed Link

Essner, J. J., K. J. Vogan, M. K. Wagner, C. J. Tabin, H. J. Yost and M. Brueckner. 2002. Conserved function for embryonic nodal cilia. Nature 418: 37–38.
PubMed Link

Ewald, A. J., H. McBride, M. Reddington, S. E. Fraser and R. Kerschmann. 2002. Surface imaging microscopy: An automated method for visualizing whole embryo samples in three dimensions at high resolution. Dev. Dynam. 225: 369–375.
PubMed Link

Fässler, P. E. and K. Sander. 1996. Hilde Mangold (1898–1924) and Spemann’s organizer: Achievement and tragedy. Wilhelm Roux Arch. Dev. Biol. 205: 323–332.

Fürthauer, M., J. van Celst, C. Thisse and B. Thisse. 2004. FGF signaling controls the dorsoventral patterning of the zebrafish embryo. Development 131: 2853–2864.
PubMed Link

Fan, M. J. and S. Y. Sokol. 1997. A role for Siamois in Spemann organizer formation. Development 124: 2581–2589.
PubMed Link

Fekany, K. and 14 others. 1999. The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures. Development 126: 1427–1438.
PubMed Link

Fluck, R. A., K. L. Krok, B. A. Bast, S. E. Michaud and C. E. Kim. 1998. Gravity influences the position of the dorsoventral axis in medaka fish embryos (Oryzias latipes). Dev. Growth Diff. 40: 509–518.
PubMed Link

Fukazawa C. and 6 others. 2010. poky/chuk/ikk1 is required for differentiation of the zebrafish embryonic epidermis. Dev. Biol. 346: 272–283.
PubMed Link

Fukuda, M. and 7 others. 2010. Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin. Int. J. Dev. Biol. 54: 81–92.
PubMed Link

Funayama, N., F. Fagotto, P. McCrea and B. M. Gumbiner. 1995. Embryonic axis induction by the armadillo repeat domain of b-catenin: Evidence for intracellular signalling. J. Cell Biol. 128: 959–968.
PubMed Link

Gamse , J. T., Y. S. Kuan, M. Macurak, C. Brösamle, B. Thisse, C. Thisse and M. E. Halpern. 2005. Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target. Development 132: 4869–4881.
PubMed Link

Gawantka, V., H. Delius, K. Hirschfeld, C. Blumenstock and C. Niehrs. 1995. Antagonizing the Spemann organizer: Role of the homeobox gene Xvent-1. EMBO J. 14: 6268–6279.
PubMed Link

Geoffroy Saint-Hilaire, E. 1822. Considérations génerales sur la vertèbre. Mém. Mus. Hist. Nat. 9: 89–1110.

Gerhart, J. C., M. Danilchik, T. Doniach, S. Roberts, B. Rowning and R.Stewart. 1989. Cortical rotation of the Xenopus egg: Consequences for the anteroposterior pattern of embryonic dorsal development. Development [Suppl.] 107: 37–51.
PubMed Link

Germain, S., M. Howell, G. M. Esslemont and C. S. Hill. 2000. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 14: 435–451.
PubMed Link

Gilbert, S. F. and J. A. Bolker. 2001. Homologies of process and modular elements of embryonic construction. J. Exp. Zool. 291: 1–12.
PubMed Link

Gilbert, S. F. and L. Saxén. 1993. Spemann’s organizer: Models and molecules. Mech. Dev. 41: 73–89.
PubMed Link

Gimlich, R. L. 1985. Cytoplasmic localization and chordamesoderm induction in the frog embryo. J. Embryol. Exp. Morphol. 89: 89–111.
PubMed Link

Gimlich, R. L. 1986. Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo. Dev. Biol. 115: 340–352.
PubMed Link

Gimlich, R. L. and J. C. Gerhart. 1984. Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev. Biol. 104: 117–130.
PubMed Link

Glavic, A., J. L. Gómez-Skarmeta and R. Mayor. 2001. Xiro-1 controls mesoderm patterning by repressing bmp-4 expression in the Spemann organizer. Dev. Dyn. 222: 368–376.
PubMed Link

Glinka, A., W. Wu, A. P. Monaghan, C. Blumenstock and C. Niehrs. 1998. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391: 357–362.
PubMed Link

Glinka, A., W. Wu, D. Onichtchouk, C. Blumenstock and C. Niehrs. 1997. Head induction by simultaneous repression of BMP and Wnt signalling in Xenopus. Nature 389: 517–519.
PubMed Link

Godsave, S. F. and J. M. W. Slack. 1989. Clonal analysis of mesoderm induction in Xenopus laevis. Dev. Biol. 134: 486–490.
PubMed Link

Gont, L. K., H. Steinbeisser, B. Blumberg and E. M. De Robertis. 1993. Tail formation as a continuation of gastrulation: The multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development 119: 991–1004.
PubMed Link

Goto, T., L. Davidson, M. Asashima and R. Keller. 2005. Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr. Biol. 15: 787–793.
PubMed Link

Graff, J. M., R. S. Thies, J. J. Song, A. J. Celeste and D. A. Melton. 1994. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79: 169–179.
PubMed Link

Granato, M. and C. Nüsslein-Volhard. 1996. Fishing for genes controlling development. Curr. Opin. Genet. Dev. 6: 461–468.
PubMed Link

Gritsman, K., W. S. Talbot and A. F. Schier. 2000. Nodal signaling patterns the organizer. Development 127: 921–932.
PubMed Link

Grunz, H. 1997. Neural induction in amphibians. Curr. Topics Dev. Biol. 35: 191–228.
PubMed Link

Grunz, H. and L. Tacke. 1989. Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducers. Cell Diff. Dev. 28: 211–217.
PubMed Link

Guger, K. A. and B. M. Gumbiner. 1995. b-Catenin has wnt-like activity and mimics the Nieuwkoop signaling center in Xenopus dorsal-ventral patterning. Dev. Biol. 172: 115–125.
PubMed Link

Gurdon, J. B and N. Hopwood. 2000. The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. Int. J. Dev. Biol. 44: 43–50.
PubMed Link

Haffter, P. and 16 others. 1996. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123: 1–36.
PubMed Link

Haffter, P. and 16 others. 1996. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123: 1–36.
PubMed Link

Hamburger, V. 1984. Hilde Mangold, co-discoverer of the organizer. J. Hist. Biol. 17: 1–11.
PubMed Link

Hamburger, V. 1988. The Heritage of Experimental Embryology: Hans Spemann and the organizer. Oxford University Press, Oxford.

Hardin, J. D. and R. Keller. 1988. The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103: 211–230.
PubMed Link

Hawley, S. H. B., K. Wünnenberg-Stapleton, C. Hashimoto, M. N. Laurent, T. Watabe, B. W. Blumberg and K. W. Y. Cho. 1995. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev. 9: 2923–2935.
PubMed Link

He, X., J.-P. Saint-Jeannet, J. R. Woodgett, H. E. Varmus and I. B. Dawid. 1995. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374: 617–622.
PubMed Link

Heasman, J. and 8 others. 1994a. Overexpression of cadherins and underexpression of b-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79: 791–803.
PubMed Link

Heasman, J., D. Ginsberg, K. Goldstone, T. Pratt, C. Yoshidanaro and C. Wylie. 1994b. A functional test for maternally inherited cadherin in Xenopus shows its importance in cell adhesion at the blastula stage. Development 120: 49–57.
PubMed Link

Helde, K. A., E. T. Wilson, C. J. Cretekos and D. J. Grunwald. 1994. Contribution of early cells to the fate map of the zebrafish gastrula. Science 265: 517–520.
PubMed Link

Hemmati-Brivanlou A. and D. A. Melton. 1997. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88: 13–17.
PubMed Link

Hemmati-Brivanlou, A. and D. A. Melton. 1992. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359: 609–614.
PubMed Link

Hemmati-Brivanlou, A. and D. A. Melton. 1994. Inhibition of activin signalling promotes neuralization in Xenopus. Cell 77: 273–281.
PubMed Link

Hemmati-Brivanlou, A. and G. H. Thomsen. 1995. Ventral mesodermal patterning in Xenopus embryos: Expression patterns and activities of BMP-2 and BMP-4. Dev. Genet. 17: 78–89.
PubMed Link

Hirsch, N., L. B. Zimmerman and R. M. Grainger. 2002. Xenopus, the next generation: X. tropicalis genetics and genomics. Dev. Dynam. 225: 422–433.
PubMed Link

Ho, R. K. 1992. Axis formation in the embryo of the zebrafish, Brachydanio rerio. Sem. Dev. Biol. 3: 53–64.

Holley, S. A., P. D. Jackson, Y. Sasai, B. Lu, E. M. De Robertis, F. M. Hoffmann and E. L. Ferguson. 1995. A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature 376: 249–253.
PubMed Link

Holowacz, T. and R. P. Elinson. 1993. Cortical cytoplasm, which induces dorsal axis formation in Xenopus, is inactivated by UV irradiation of the oocyte. Development 119: 277–285.
PubMed Link

Holowacz, T. and S. Sokol. 1999. FGF is required for posterior patterning but not for neural induction. Dev. Biol. 205: 296–308.
PubMed Link

Holtfreter, H. 1933. Die totale Exogastrulation, eine Selbststablösung des Ektoderms von Entomesoderm. Entwicklung und funktionelles Verhalten nervenloser Organe. Arch. Entwick. Mech. Org. 129: 669–793.

Hoppler, S., J. D. Brown and R. T. Moon. 1996. Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev. 10: 2805–2817.
PubMed Link

Houliston, E. and R. P. Elinson. 1991. Evidence for the involvement of microtubules, endoplasmic reticulum, and kinesin in cortical rotation of fertilized frog eggs. J. Cell Biol. 114: 1017–1028.
PubMed Link

Huang, P., Z. Zhu, S. Lin and B. Zhang. 2012. Reverse genetic approaches in zebrafish. J. Genet. Genomics. 39: 421–433.
PubMed Link

Hurtado, C. and E. M. De Robertis. 2007. Neural induction in the absence of organizer in salamanders is mediated by MAPK. Dev. Biol. 307: 282–289.
PubMed Link

Ibrahim, H. and R. Winklbauer. 2001. Mechanisms of mesendoderm internalization in Xenopus gastrula: Lessons from the ventral side. Dev. Biol. 240: 108–122.
PubMed Link

Iemura, S.-I. and 7 others. 1998. Direct binding of follistatin to a complex of bone morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Proc. Natl. Acad. Sci. USA 95: 9337–9342.
PubMed Link

Ishibashi, H., N. Matsumura, H. Hanafusa, K. Matsumoto, E. M. De Robertis and H. Kuroda. 2008. Expression of Siamois and Twin in the blastula Chordin/Noggin signaling center is required for brain formation in Xenopus laevis embryos. Mech. Dev. 125: 58–66.
PubMed Link

Jones, C. M., K. M. Lyons, P. M. Lapan, C. V. E. Wright and B. L. M. Hogan. 1992. DVR-4 (bone morphogenetic protein-4) as a posterior ventralizing factor in Xenopus mesoderm induction. Development 115: 639–647.
PubMed Link

Kane, D. A. and C. B. Kimmel. 1993. The zebrafish midblastula transition. Development 119: 447–456.
PubMed Link

Kane, D. A. and C. B. Kimmel. 1993. The zebrafish midblastula transition. Development 119: 447–456.
PubMed Link

Kawahara, A., T. Wilm, L. Solnica-Krezel and I. B. Dawid. 2000. Antagonistic role of vega1 and bozozok/dharma homeobox genes in organizer formation. Proc. Natl. Acad. Sci. USA 97: 12121–12126.
PubMed Link

Keller, P. J., A. D. Schmidt, J. Wittbrodt and E. H. K. Stelzer. 2008. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322: 1065–1069.
PubMed Link

Keller, R. and M. Danilchik. 1988. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103: 193–209.
PubMed Link

Keller, R. E. 1975. Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev. Biol. 42: 222–241.
PubMed Link

Keller, R. E. 1976. Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer. Dev. Biol. 51: 118–137.
PubMed Link

Keller, R. E. 1980. The cellular basis of epiboly: An SEM study of deep-cell rearrangement during gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol. 60: 201–234.
PubMed Link

Keller, R. E. 1981. An experimental analysis of the role of bottle cells and the deep marginal zone in the gastrulation of Xenopus laevis. J. Exp. Zool. 216: 81–101.
PubMed Link

Keller, R. E. 1986. The cellular basis of amphibian gastrulation. In L. Browder (ed.), Developmental Biology: A Comprehensive Synthesis, Vol. 2. Plenum, New York, pp. 241–327.

Keller, R. E. and G. C. Schoenwolf. 1977. An SEM study of cellular morphology, contact, and arrangement as related to gastrulation in Xenopus laevis. Wilhelm Roux Arch. Dev. Biol. 182: 165–186.

Kelly, G. M., D. F. Erezyilmaz and R. T. Moon. 1995. Induction of a secondary embryonic axis in zebrafish occurs following the overexpression of b-catenin. Mech. Dev. 53: 261–273.
PubMed Link

Kessler, D. S. 1997. Siamois is required for formation of Spemann’s organizer. Proc. Natl. Acad. Sci. USA 94: 13017–13022.
PubMed Link

Khokha, M. K., J. Yeh, T. C. Grammer and R. M. Harland. 2005. Depletion of three BMP antagonists from Spemann’s organizer leads to catastrophic loss of dorsal structures. Dev. Cell 8: 401–411.
PubMed Link

Kiecker, C. and C. Niehrs. 2001. A morphogen gradient of Wnt/b-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128: 4189–4201.
PubMed Link

Kim, S.-H., A. Yamamoto, T. Bouwmeester, E. Agius and E. M. De Robertis. 1998. The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 125: 4681–4691.
PubMed Link

Kimmel, C. B. and R. D. Law. 1985. Cell lineage of zebrafish blastomeres. II. Formation of the yolk syncytial layer. Dev. Biol. 108: 86–93.
PubMed Link

Kimmel, C. B. and R. M. Warga. 1987. Indeterminate cell lineage of the zebrafish embryo. Dev. Biol. 124: 269–280.
PubMed Link

Kishimoto, Y., K. H. Lee, L. Zon, M. Hammerschmidt and S. Schulte-Merker. 1997. The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124: 4457–4466.
PubMed Link

Kishimoto, Y., S. Koshita, M. Furutani-Seiki and H. Kondoh. 2004. Zebrafish maternal-effect mutations causing cytokinesis defect without affecting mitosis or equatorial vasa deposition. Mech. Dev. 121: 79–89.
PubMed Link

Kofron, M. and 9 others. 1999.Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFb growth factors.Development 126: 5759 –5770.
PubMed Link

Kolm, P. J., V. Apekin and H. Sive. 1997. Xenopus hindbrain patterning requires retinoic signaling. Dev. Biol. 192: 1–16.
PubMed Link

Koshida, S., M. Shinya, T. Mizuno, A. Kuroiwa and H. Takeda. 1998. Initial anteroposterior pattern of zebrafish central nervous system is determined by differential competence of the epiblast. Development 125: 1957–1966.
PubMed Link

Ku, M. and D. A. Melton. 1993. Xwnt-11: A maternally expressed Xenopus wnt gene. Development 119: 1161–1173.
PubMed Link

Kudoh, T., M. L. Concha, C. Houart, I. B. Dawid and S. W. Wilson. 2004. Combinatorial FGF and BMP signalling patterns the gastrula ectoderm into prospective neural and epidermal domains. Development 131: 3581–3592.
PubMed Link

Kudoh, T., S. W. Wilson and I. B. Dawid. 2002. Distinct roles for FGF, Wnt, and retinoic acid in posteriorizing the neural ectoderm. Development 129: 4335–4346.
PubMed Link

Kuroda, H., M. Inui, K. Sugimoto, T. Hayata and M. Asashima. 2002. Axial protocadherin is a mediator of prenotochord cell sorting in Xenopus. Dev. Biol. 244: 267–277.
PubMed Link

Kuroda, H., O. Wessely and E. M. De Robertis. 2004.  Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, b-catenin, and Cerberus. PLoS Biol. 2:E92.
PubMed Link

Landström, U. and S. Løvtrup. 1979. Fate maps and cell differentiation in the amphibian embryo: An experimental study. J. Embryol. Exp. Morphol. 54: 113–130.
PubMed Link

Lane, M. C. and M. D. Sheets. 2002. Rethinking axial patterning in amphibians. Dev. Dynam. 225: 434–447.
PubMed Link

Lane, M. C. and W. C. Smith. 1999. The origins of primitive blood in Xenopus: Implications for axial patterning. Development 126: 423–434.
PubMed Link

Langdon, Y. G. and M. C. Mullins. 2011. Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu. Rev. Genet. 45: 357–377.
PubMed Link

Larabell, C. A. and 7 others. 1997. Establishment of the dorsal-ventral axis in Xenopus embryos is presaged by early asymmetries in b-catenin which are modulated by the Wnt signaling pathway. J. Cell Biol. 136: 1123–1136.
PubMed Link

Laurent, M. N., I. L. Blitz, C. Hashimoto, U. Rothbächer and K. W.-Y. Cho. 1997. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann’s organizer. Development 124: 4905–4916.
PubMed Link

Lawson, N. D. and S. A. Wolfe. 2011. Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev. Cell. 21: 48–64.
PubMed Link

Lee, J. E., S. M. Hollenberg, L. Snider, D. L. Turner, N. Lipnick and H. Weintraub. 1995. Conversion of Xenopus ectoderm into neurons by neuroD, a basic helix-loop-helix protein. Science 268: 836–844.
PubMed Link

Lee, K. W., S. E. Webb and A. L. Miller. 2003. Ca2+ released via IP3 receptors is required for furrow deepening during cytokinesis in zebrafish embryos. Int. J. Dev. Biol. 47: 411–421.
PubMed Link

Lemaire, P., N. Garrett and J. B. Gurdon. 1995. Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81: 85–94.
PubMed Link

Lemaire, P., S. Darras, D. Caillol and L. Kodjabachian. 1998. A role for the vegetally expressed Xenopus gene Mix1 in endoderm formation and in the restriction of mesoderm to the marginal zone. Development 125: 2371–2380.
PubMed Link

Lepage, S. E. and A. E. Bruce. 2010. Zebrafish epiboly: Mechanics and mechanisms. Int. J. Dev. Biol. 54: 1213–1228.
PubMed Link

Leung, C., S. E. Webb and A. L. Miller. 1998. Calcium transients accompany ooplasmic segregation in zebrafish embryos. Dev. Growth Diff. 40: 313–326.
PubMed Link

Leung, C., S. E. Webb and A. L. Miller. 2000. On the mechanism of ooplasmic segregation in single-cell zebrafish embryos. Dev. Growth Diff. 42: 29–40.
PubMed Link

Leyns, L., T. Bouwmeester, S.-H. Kim, S. Piccolo and E. M. De Robertis. 1997. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88: 747–756.
PubMed Link

Little, S. C. and M. C. Mullins. 2006. Extracellular modulation of BMP activity in patterning the dorsoventral axis. Birth Defects Res. C Embryo Today 78: 224–242.
PubMed Link

Lobikin M. and 6 others. 2012. Early, nonciliary role for microtubule proteins in left-right patterning is conserved across kingdoms. Proc. Natl. Acad. Sci. USA 109:12586–12591.
PubMed Link

Long, S., N. Ahmad and M. Rebagliati. 2003. The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 130: 2303–2316.
PubMed Link

Manes, M. E. and R. P. Elinson. 1980. Ultraviolet light inhibits gray crescent formation in the frog egg. Wilhelm Roux Arch. Dev. Biol. 189: 73–77.

Mangold, O. 1933. Über die Induktionsfahigkeit der verschiedenen Bezirke der Neurula von Urodelen. Naturwissenschaften 21: 761–766.

Mao, B. and 11 others. 2002. Kremen proteins are Dickkopf receptors that regulate Wnt/b-catenin signalling. Nature 417: 664–667.
PubMed Link

Mao, B., W. Wu, D. Hoppe, P. Stannek, A. Glinka and C. Niehrs. 2001. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411: 321–325.
PubMed Link

Marsden, M. and D. W. DeSimone. 2001. Regulation of cell polarity, radial intercalation, and epiboly in Xenopus: Novel roles for integrin and fibronectin. Development 128: 3635–3647.
PubMed Link

Miller, J. R., B. A. Rowning, C. A. Larabell, J. A. Yang-Snyder, R. L. Bates and R. T. Moon. 1999. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of Disheveled that is dependent on cortical rotation. J. Cell Biol. 146: 427–437.
PubMed Link

Molenaar, M. and 8 others. 1996. XTcf-3 transcription factor mediates b-catenin-induced axis formation in Xenopus embryos. Cell 86: 391–399.
PubMed Link

Moon, R. T. and D. Kimelman. 1998. From cortical rotation to organizer gene expression: Toward a molecular explanation of axis specification in Xenopus. BioEssays 20: 536–545.
PubMed Link

Morgan, R. and 8 others. 1999. Calponin modulates the exclusion of Otx-expressing cells from convergence extension movements. Nature Cell Biol. 1: 404–408.
PubMed Link

Mudbhary, R. and K. C. Sadler. 2011. Epigenetics, development, and cancer: Zebrafish make their mark. Birth Defects Res. C: Embryol. Today 93: 194–203.
PubMed Link

Nakamura, O. and H. Takasaki. 1970. Further studies on the differentiation capacity of the dorsal marginal zone in the morula of Triturus pyrrhogaster. Proc. Jpn. Acad. 46: 700–705.

Newman, C. S. and P. A. Krieg. 1999. Specification and differentiation of the heart in amphibia. In S. A. Moody (ed.), Cell Lineage and Fate Determination. Academic Press, New York, pp. 341–351.

Newport, J. W. and M. W. Kirschner. 1982a. A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at midblastula stage. Cell 30: 675–686.
PubMed Link

Newport, J. W. and M. W. Kirschner. 1982b. A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription. Cell 30: 687–696.
PubMed Link

Niehrs, C. 2004. Regionally specific induction by the Spemann-Mangold organizer. Nature Rev. Genet. 5: 425–434.
PubMed Link

Nieuwkoop, P. D. 1969. The formation of the mesoderm in urodele amphibians. I. Induction by the endoderm. Wilhelm Roux Arch. Entwicklungsmech. Org. 162: 341–373.

Nieuwkoop, P. D. 1973. The “organisation center” of the amphibian embryo: Its origin, spatial organisation and morphogenetic action. Adv. Morphogenet. 10: 1–39.
PubMed Link

Nieuwkoop, P. D. 1977. Origin and establishment of embryonic polar axes in amphibian development. Curr. Top. Dev. Biol. 11: 115–132.
PubMed Link

Nieuwkoop, P. D. and P. A. Florschütz. 1950. Quelques caractèrer spéciaux de le gastrulation et de la neurulation de l’oeuf de Xenopus laevis, Daud. et de quelques autres anoures. Arch. Biol. 61: 113–150.

Northrop, J., A. Woods, R. Seger, A. Suzuki, N. Ueno, E. Krebs and D. Kimelman. 1995. BMP-4 regulates the dorsal-ventral differences in FGF/MAPK-mediated mesoderm induction in Xenopus. Dev Biol. 172: 242–252.
PubMed Link

Oelgeschläger, M., H. Kuroda, B. Reversade and E. M. De Robertis. 2003. Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Dev. Cell 4: 219–230.
PubMed Link

Okada, Y., S. Tanaka, Y. Tanaka, J.-C. Belmonte and N. Hirokawa. 2005. Mechanism of nodal flow: A conserved breaking event in left-right axis determination. Cell 121: 633–644.
PubMed Link

Onuma, Y., S. Takahashi, C. Yokota and M. Asashima. 2002. Multiple nodal-related genes act coordinately in Xenopus embryogenesis. Dev. Biol. 241: 94–105.
PubMed Link

Oppenheimer, J. M. 1936. Transplantation experiments on developing teleosts (Fundulus and Perca). J. Exp. Zool. 72: 409–437.

Pézeron, G., P. Mourrain, S. Courty, J. Ghislain, T. S. Becker, F. M. Rosa and N. B. David. 2008. Live analysis of endodermal layer formation identifies random walk as a novel gastrulation movement. Curr. Biol. 18: 276–281.
PubMed Link

Park, E. C., G. S. Cho, G. H. Kim, S. C. Choi and J. K. Han. 2011. The involvement of Eph-Ephrin signaling in tissue separation and convergence during Xenopus gastrulation movements. Dev. Biol. 350: 441–450.
PubMed Link

Pera, E. M., A. Ikeda, E. Eivers and E. M. De Robertis. 2003. Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural inductin. Genes Dev. 17: 3023–3028.
PubMed Link

Pera, E. M., O. Wessely, S.-S. Li and E. M. De Robertis. 2001. Neural and head induction by insulin-like growth factor signals. Dev. Cell 1: 655–665.
PubMed Link

Petersen, C. P. and P. W. Reddien. 2009. Wnt signaling and the polarity of the primary body axis. Cell 139: 1056–1068.
PubMed Link

Piccolo, S., E. Agius, L. Leyns, S. Bhattacharyya, H. Grunz, T. Bouwmeester and E. M. DeRobertis. 1999. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP, and Wnt signals. Nature 397: 707–710.
PubMed Link

Piccolo, S., Y. Sasai, B. Lu and E. M. De Robertis. 1996. Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589–598.
PubMed Link

Pierce, S. B. and D. Kimelman. 1995. Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development 121: 755–765.
PubMed Link

Rankin, S. A., J. Kormish, M. Kofron, A. Jegga and A. M. Zorn. 2011. A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. Dev. Biol. 351: 297–310.
PubMed Link

Rebagliati, M. R., R. Toyama, C. Fricke, P. Haffter and I. B. Dawid. 1998. Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev. Biol. 199: 261–272.
PubMed Link

Recanzone, G. and W. A. Harris. 1985. Demonstration of neural induction using nuclear markers in Xenopus. Wilhelm Roux Arch. Dev. Biol. 194: 344–354.

Reversade, B. and E. M. De Robertis. 2005. Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123: 1147–1160.
PubMed Link

Reversade, B., H. Kuroda, H. Lee, A. Mays, and E. M. De Robertis. 2005. Depletion of BMP2, BMP4, and BMP7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. Development 132: 3381–3392.
PubMed Link

Rex, M., E. Hilton and R. Old. 2002. Multiple interactions between maternally-activated signaling pathway control Xenopus nodal-related genes. Int. J. Dev. Biol. 46: 217–226.
PubMed Link

Richard-Parpaillon, L., C. Héligon, F. Chesnel, D. Boujard and A. Philpott. 2002. The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus. Dev. Biol. 244: 407–417.
PubMed Link

Rogers, C. D., S. A. Moody and E. S. Casey. 2009. Neural induction and factors that stabilize a neural fate. Birth Defects Res. C: Embryol. Today 87: 249–262.
PubMed Link

Roux, W. 1887. Beiträge zur Entwicklungsmechanik des Embryo. Arch. Mikrosk. Anat. 29: 157–212.

Rozario, T., B. Dzamba, G. F. Weber, L. A. Davidson and D. W. DeSimone. 2009. The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev. Biol. 327: 386–398.
PubMed Link

Ryan, A. K. and 14 others. 1998. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394: 545–551.
PubMed Link

Saka, Y. and J. C. Smith. 2001. Spatial and temporal patterns of cell division during early Xenopus embryogenesis. Dev. Biol. 229: 307–318.
PubMed Link

Sampath, K. and 8 others. 1998. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395: 185–189.
PubMed Link

Sander, K. and P. E. Faessler. 2001. Introducing the Spemann-Mangold organizer: Experiments and insights that generated a key concept in developmental biology. Int. J. Dev. Biol. 45: 1–11.
PubMed Link

Sasai, Y., B. Lu, H. Steinbeisser, D. Geissert, L. K. Gont and E. M. De Robertis. 1994. Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79: 779–790.
PubMed Link

Sato, S. M. and T. D. Sargent. 1989. Development of neural inducing capacity in dissociated Xenopus embryos. Dev. Biol. 134: 263–266.
PubMed Link

Savage, R. and C. R. Phillips. 1989. Signals from the dorsal blastopore lip region during gastrulation bias the ectoderm toward a nonepidermal pathway of differentiation in Xenopus laevis. Dev. Biol. 133: 157–168.
PubMed Link

Saxén, L. 1961. Transfilter neural induction of amphibian ectoderm. Dev. Biol. 3: 140–152.
PubMed Link

Saxén, L. 2001. Spemann’s heritage in Finnish developmental biology. Int. J. Dev. Biol. 45: 51–55.
PubMed Link

Saxén, L. and S. Toivonen. 1962. Embryonic Induction. Prentice-Hall, Englewood Cliffs, NJ.

Schier, A. F. 2001. Axis formation and patterning in zebrafish. Curr. Opin. Genet. Dev. 11: 393–404.
PubMed Link

Schier, A. F. and W. S. Talbot. 1998. The zebrafish organizer. Curr. Opin. Genet. Dev. 8: 464–471.
PubMed Link

Schier, A. F. and W. S. Talbot. 2001. Nodal signaling and the zebrafish organizer. Int. J. Dev. Biol. 45: 289–297.
PubMed Link

Schier, A. F., S. C. Neuhauss, K. A. Held, W. S. Talbot and W. Driever. 1997 The one eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124: 327–342.
PubMed Link

Schmidt, J., V. Francois, E. Bier and D. Kimelman. 1995. Drosophila short gastrulation induces an ectopic axis in Xenopus: Evidence for conserved mechanisms of dorsoventral patterning. Development 121: 4319–4328.
PubMed Link

Schmitz, B. and J. A. Campos-Ortega. 1994. Dorso-ventral polarity of the zebrafish embryo is distinguishable prior to the onset of gastrulation. Wilhelm Roux Arch. Dev. Biol. 203: 374–380.

Schneider, S., H. Steinbeisser, R. M. Warga and P. Hausen. 1996. b-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev. 57: 191–198.
PubMed Link

Schroeder, K. E., M. L. Condic, L. M. Eisenberg and H. J. Yost. 1999. Spatially regulated translation in embryos: Asymmetric expression of maternal Wnt-11 along the dorsal-ventral axis in Xenopus. Dev. Biol. 214: 288–297.
PubMed Link

Schulte-Merker, S., K. J. Lee, A. P. McMahon and M. Hammerschmidt. 1997. The zebrafish organizer requires chordino. Nature 387: 862–863.
PubMed Link

Schweickert, A., P. Walentek, T. Thumberger and M. Danilchik. 2012. Linking early determinants and cilia-driven leftward flow in left-right axis specification of Xenopus laevis: A theoretical approach. Differentiation 83: S67–77.
PubMed Link

Schweickert, A., T. Weber, T. Beyer, P. Vick, S. Bogusch, K. Feistel and M. Blum. 2007. Cilia-driven leftward flow determines laterality in Xenopus. Curr. Biol. 17: 60–66.
PubMed Link

Shimizu, T. and 8 others. 2005. E-cadherin is required for gastrulation cell movements in zebrafish. Mech. Dev. 122: 747–763.
PubMed Link

Shimizu, T., Y. K. Bae, O. Muraoka and M. Hibi. 2005b. Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev. Biol. 279: 125–141.
PubMed Link

Shinya, M., M. Furutani-Seiki, A. Kuroiwa and H. Takeda. 1999. Mosaic analysis with oep mutant reveals a repressive interaction between floor-plate and non-floor-plate mutant cells in the zebrafish neural tube. Dev. Growth Diff. 41: 135–142.
PubMed Link

Shiotsugu, J. and 7 others. 2004. Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation. Development 131: 2653–2667.
PubMed Link

Siddiqui, M., H. Sheikh, C. Tran, A. E. Bruce. 2010. The tight junction component Claudin E is required for zebrafish epiboly. Dev. Dyn. 239: 715–722.
PubMed Link

Silva, A. C., M. Filipe, K.-M. Kuerner, H. Steinbeisser and J. A. Belo. 2003. Endogenous Cerberus activity is required for anterior head specification in Xenopus. Development 130: 4943–4953.
PubMed Link

Sive, H. L. and P. F. Cheng. 1991. Retinoic acid perturbs the expression of Xhox.lab genes and alters mesodermal determination in Xenopus laevis. Genes Dev. 5: 1321–1332.
PubMed Link

Skirkanich, J., G. Luxardi, J. Yang, L. Kodjabachian and P. S. Klein. 2011. An essential role for transcription before the MBT in Xenopus laevis. Dev. Biol. 357: 478–491.
PubMed Link

Smith, J. C. 2001. Making mesoderm: Upstream and downstream of Xbra. Int. J. Dev. Biol. 45: 219–224.
PubMed Link

Smith, W. C. and R. M. Harland. 1992. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829–840.
PubMed Link

Smith, W. C., A. K. Knecht, M. Wu and R. M. Harland. 1993. Secreted noggin mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature 361: 547–549.
PubMed Link

Smithers, L. E., C. M. Jones. 2002. Xhex-expressing endodermal tissues are essential for anterior patterning in Xenopus. Mech. Dev. 119: 191–200.
PubMed Link

Solnica-Krezel, L. and W. Driever. 1994. Microtubule arrays of the zebrafish yolk cell: Organization and function during epiboly. Development 120: 2443–2455.
PubMed Link

Solnica-Krezel, L. and W. Driever. 2001. The role of the homeodomain protein Bozozok in zebrafish axis formation. Int. J. Dev. Biol. 45: 299–310.
PubMed Link

Spemann, H. 1903. Entwicklungsphysiologische Studien am Tritonei. III. Arch. Entwicklungsmech. 16: 551–631.

Spemann, H. 1918. Über die Determination der ersten Organanlagen des Amphibienembryo. Wilhelm Roux Arch. Entwicklungsmech. Org. 43: 448–555.

Spemann, H. 1938. Embryonic Development and Induction. Yale University Press, New Haven.

Spemann, H. and H. Mangold. 1924. Induction of embryonic primordia by implantation of organizers from a different species. (Trans. V. Hamburger). In B. H. Willier and J. M. Oppenheimer (eds.), Foundations of Experimental Embryology. Hafner, New York, pp. 144–184. Reprinted in Int. J. Dev. Biol. 45: 13–38.

Spofford, W. R. 1945. Observations on the posterior part of the neural plate in Ambystoma. J. Exp. Zool. 99: 35–52.

Stancheva, I., O. El-Maarri, J. Walter, A. Niveleau and R. R. Meehan. 2002. DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos. Dev. Biol. 243: 155–165.
PubMed Link

Steinbeisser, H., A. Fainsod, C. Niehrs, Y. Sasai and E. M. De Robertis. 1995. The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: A loss-of-function study using antisense RNA. EMBO J. 14: 5230–5243.
PubMed Link

Strahle, U. and S. Jesuthasan. 1993. Ultraviolet irradiation impairs epiboly in zebrafish embryos: Evidence for a microtubule-dependent mechanism of epiboly. Development 119: 909–919.
PubMed Link

Sun, Z., A. Amsterdam, G. J. Pazour, D. G. Cole, M. S. Miller and N. Hopkins. 2004. A genetic screen in zebrafish identifies cilia genes as a principle cause of cystic kidney. Development 131: 4085–4093.

Suzuki, A., R. S. Thies, N. Yamaji, J. J. Song, J. M. Wozney, K. Muramaki and N. Ueno. 1994. A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in early Xenopus embryo. Proc. Natl. Acad. Sci. USA 91: 10255–10259.
PubMed Link

Tao, Q. and 9 others. 2005. Maternal wnt11 activates the canonical Wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120: 857–871.
PubMed Link

Taverner, N. V. and 8 others. 2005. Microarray-based identification of VegT targets in Xenopus. Mech. Dev. 122: 333–354.
PubMed Link

Toivonen, S. 1979. Transmission problem in primary induction. Differentiation 15: 177–181.
PubMed Link

Toivonen, S. and J. Wartiovaara. 1976. Mechanism of cell interaction during primary induction studied in transfilter experiments. Differentiation 5: 61–66.
PubMed Link

Toivonen, S. and L. Saxén. 1955. The simultaneous inducing action of liver and bone marrow of the guinea pig in implantation and explantation experiments with embryos of Triturus. Exp. Cell Res. [Suppl.] 3: 346–357.
PubMed Link

Toivonen, S. and L. Saxen 1968. Morphogenetic interaction of presumptive neural and mesodermal cells mixed in different ratios. Science 159: 539–540.
PubMed Link

Toivonen, S., D. Tarin, L. Saxén, P. J. Tarin and J. Wartiovaara. 1975. Transfilter studies on neural induction in the newt. Differentiation 4: 1–7.
PubMed Link

Trinkaus, J. P. 1984. Mechanisms of Fundulus epiboly: A current view. Am. Zool. 24: 673–688.

Trinkaus, J. P. 1992. The midblastula transition, the YSL transition, and the onset of gastrulation in Fundulus. Development [Suppl.] 1992: 75–80.
PubMed Link

Trinkaus, J. P. 1993. The yolk syncitial layer of Fundulus: Its origin and history and its significance for early embryogenesis. J. Exp. Zool. 265: 258–284.
PubMed Link

Tsang, M., S. Maegawa, A. Kiang, R. Habas, E. Weinberg and I. B. Dawid. 2004. A role for MKP3 in axial patterning of the zebrafish embryo. Development 131: 2769–2779.
PubMed Link

Tucker, A. S. and J. M. Slack. 1995. Tail bud determination in the vertebrate embryo. Curr. Biol. 5: 807–813.
PubMed Link

Tucker, J. A., K. A. Mintzer and M. C. Mullins. 2008. The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev. Cell 14: 108–119.
PubMed Link

Twitty, V. C. 1966. Of Scientists and Salamanders. Freeman, San Francisco.

Valles, J. M., Jr., S. R. Wasserman, C. Schweidenback, J. Edwardson, J. M. Denegre and K. L. Mowry. 2002. Processes that occur before second cleavage determine third cleavage orientation in Xenopus. Exp. Cell Res. 274: 112–118.
PubMed Link

Vandenberg, L. N. and M. Levin. 2010. Far from solved: A perspective on what we know about early mechanisms of left-right asymmetry. Dev. Dyn. 239: 3131–3146.
PubMed Link

Vincent, J. P., G. F. Oster and J. C. Gerhart. 1986. Kinematics of gray crescent formation in Xenopus eggs: The displacement of subcortical cytoplasm relative to the egg surface. Dev. Biol. 113: 484–500.
PubMed Link

Wacker, S. A., C. L. McNulty, A. J. Durston. 2004. The initiation of Hox gene expression in Xenopus laevis is controlled by Brachyury and BMP4. Dev. Biol. 266: 123–137.
PubMed Link

Wallingford, J. B., A. J. Ewald, R. M. Harland and S. E. Fraser. 2001. Calcium signaling during convergent extension in Xenopus. Curr. Biol. 11: 652–661.
PubMed Link

Wang, S., M. Krinks, K. Lin, F. P. Luyten and M. Moos, Jr. 1997. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88: 757–766.
PubMed Link

Warga, R. M. and C. B. Kimmel. 1990. Cell movements during epiboly and gastrulation in zebrafish. Development 108: 569–580.
PubMed Link

Weaver C. and 9 others. 2003. GBP binds kinesin light chains and translocates during cortical rotation in Xenopus eggs. Development 130: 5425–5436.
PubMed Link

Weaver, C. and D. Kimelman. 2004. Move it or lose it: Axis specification in Xenopus. Development 131: 3491–3499.
PubMed Link

Wessely, O., J. I. Kim, D. Geissert, U. Tran and E. M. De Robertis. 2004. Analysis of Spemann organizer formation in Xenopus embryos by cDNA macroarrays. Dev. Bio. 269: 552–566.
PubMed Link

White, J. A. and J. Heasman. 2008. Maternal control of pattern formation in Xenopus laevis. J. Exp. Zool. (MDE) 310B: 73–84.
PubMed Link

White, R. J., Q. Nie, A. D. Lander and T. F. Schilling. 2007. Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo. PLoS Biol. Nov. 5(11): e304.
PubMed Link

Wilson, P. A. and A. Hemmati-Brivanlou. 1995. Induction of epidermis and inhibition of neural fate by BMP-4. Nature 376: 331–333.
PubMed Link

Wilson, P. and R. Keller. 1991. Cell rearrangement during gastrulation of Xenopus: Direct observation of cultured explants. Development 112: 289–300.
PubMed Link

Winklbauer, R. and E. W. Damm. 2011. Internalizing the vegetal cell mass before and during amphibian gastrulation: vegetal rotation and related movements. WIREs Dev. Biol. doi:10.1002/wdev.26.
PubMed Link

Winklbauer, R. and M. Schürfeld. 1999. Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus. Development 126: 3703–3713.
PubMed Link

Winklbauer, R. and R. E. Keller. 1996. Fibronectin, mesoderm migration, and gastrulation in Xenopus. Dev. Biol. 177: 413–426.
PubMed Link

Xu, S, F. Cheng, J. Liang, W. Wu and J. Zhang. 2012.  Maternal xNorrin, a canonical Wnt signaling agonist and TGF-b?antagonist, controls early neuroectoderm specification in Xenopus. PLoS Biol.10: e1001286.
PubMed Link

Yamanaka, Y. and 7 others. 1998. A novel homeobox gene, dharma, can induce the organizer in a non-cell-autonomous manner. Genes Dev. 12: 2345–2353.
PubMed Link

Yang, J., C. Tan, R. S. Darken, P. A. Wilson and P. S. Klein. 2002. b-Catenin/Tcf-regulated transcription prior to the midblastula transition. Development 129: 5743–5752.
PubMed Link

Yao, J and D. S. Kessler. 2001. Goosecoid promotes head organizer activity by direct repression of Xwnt8 in Spemann’s organizer. Development 128: 2975–2987.
PubMed Link

Yost, C., M. Torres, J. R. Miller, E. Huang, D. Kimelman and R. T. Moon. 1996. The axis-inducing ability, stability, and subcellular localization of b-catenin are regulated in Xenopus embryos by glycogen synthase kinase-3. Genes Dev. 10: 1443–1454.
PubMed Link

Zhang, J., D. W. Houston, M. L. King, C. Payne, C. Wylie and J. Heasman. 1998. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94: 515–524.
PubMed Link

Zhang, X. and 11 others. 2012. Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation. Cell 149: 1565–1577.
PubMed Link

Zhong, T. P., S. Childs, J. P. Leu and M. C. Fishman. 2001. Gridlock signalling pathway fashions the first embryonic artery. Nature 414: 216–220.
PubMed Link

Zimmerman, L. B., J. M. de Jesús-Escobar and R. M. Harland. 1996. The Spemann organizer signal noggin binds and inactivates bone morphogenesis protein 4. Cell 86: 599–606.
PubMed Link

 

Citation for the BioWeb Conference Links
Barresi, M. J., and Lee, K. 2005–2010. Biology Web Conferences. Smith College, Northampton, MA.

© All the material on this website is protected by copyright. It may not be reproduced in any form without permission from the copyright holder.
Home Link